
Black and White Image Recoloration with a Convolutional

Neural Network

Ilana Zane

December 18, 2021

1 Introduction

Image recoloration and restoration from
black and white photos is an arduous process
requiring artistic skill, understanding of color
composition, and Photoshop experience. How-
ever, there are now several ways to utilize the
power of machine learning to recolor images
in a fraction of the time. Popular methods of
recoloring involve using generative adversarial
networks (GAN) or convolutional neural net-
works (CNN). In this paper, I attempt to create
my own version of a CNN to recolor black and
white images, and explore how well the network
performs when it is provided with images that
are missing information. In the following sec-
tions I explain my approach and results from
the project.

2 Approach

Although a GAN is more powerful, as they
are typically the result of two CNNs, single
CNNs are still capable of effectively recoloring
images based on their ability to extract differ-
ent features in different layers of the network.
In short, a CNN first extracts low level fea-
tures such as curves and edges, and then it
continues to extract patterns and higher level
details. Once the CNN has these different lay-
ers of varying detail, it is able to combine these
layers to create a full image.

2.1 Model

I based my model off of [2] to serve as
a starting point, and made several modifica-
tions to create a model that better suited the

project. Training and data generation param-
eters were edited so the model could run on
my laptop and through Google Colab. Before
training, the images are preprocessed by con-
verting them from RGB to the Lab color space,
since Lab is a more accurate color space to de-
scribe the human perception of color. The L
channel of the image, which describes lightness
through gray-scale, is isolated and used as in-
put for the model. The model consists of 12
convolutional layers, created through the Ten-
sorflow platform and Keras library, that take
images of size 256 x 256. In order to extract
features, the model has a kernel size of 3x3 and
a stride of 2. This means that images are ana-
lyzed by a 3x3 window to see only nine pixels at
a time and the stride parameter dictates that
the window moves by 2 pixels each time. This
essentially leaves us with an image that is half
the width and height of the original. Towards
the end of the process, the network upsamples
the image in order to increase the dimensions
of the image to what it originally was.

2.2 Training and Testing
Datasets

The training data-set consists of 10 256x256
colored images of faces that were converted
from RBG to Lab. Since this is a relatively
small number of images for what is usually
needed to properly train a model, a data gen-
erator was used to make 50 unique copies of
each original training image by rotating, flip-
ping, and zooming in on them. A main reason
for doing this instead of just using thousands
of raw images is to both save time training the
model as well as efficiently use computational

1



Figure 1: A set of ground truth images (top row) that have been converted to black and white
(middle row), and then recolored by the network (bottom row).

resources. Since I am running this network di-
rectly on my Mac Book laptop, there is only so
much computational power available for me to
use. The model never sees the original training
data and uses this generated data. The testing
data-set consisted of 15 images of faces from
the CelebA-HQ data set [1] found on Kaggle.

2.3 Training the Model

In terms of training the model, there were
a variety of parameters to consider. Since the
number of images being used was relatively
small (even after the data generation), it was
important to then run a large number of steps
per epoch in order for the model to see enough
of the training data. I experimented with sev-
eral different parameters and finally settled on
1,000 steps per epoch with 1 epoch in order
to achieve decent enough results, while keep-
ing the run-time at a reasonable length (∼1 hr
of training). With only a few steps per epoch, I
found that the recolored images were predom-
inantly one color (green, red, blue, purple), so
it seemed as though this needed to be kept rel-
atively high in order to have the model recolor
the images closely to their original ones.

3 Results

3.1 Recoloration Performance

The results of the model can be seen in Fig.
1, where six black and white faces have been
recolored. The first and second rows show the
ground truth and black and white image, re-
spectively, while the third row shows the re-
colored image. Faces were chosen as the test-
ing since the model was trained exclusively on
faces, although in principle any 256x256 black
and white image could be used.

From these results one of the first things
that can be noticed is that the recolored im-
ages are much less vibrant than the originals.
The model seems to be biased towards the color
blue, as there are extra traces of the color in
almost all of the images where it doesn’t be-
long. In addition, the model seems to struggle
with recoloring people with blonde hair as seen
by the first column, and also has trouble pick-
ing up bright red colors, which is particularly
noticeable in the fifth column. In general, how-
ever, the model was able to capture skin tones
fairly well and able to match most of the orig-
inal image.

2



Part of the reason for this may have to do
with the fact that the training set consisted
of mostly white women with darker hair. The
images in the training set were portraits that
included the subjects’ bodies in various poses,
with a lot of different background colors. The
range of colors might contribute to the overall
gray/brown tint that most of the test images
have.

While it was not explicitly tested, it would
be interesting to see how well the model per-
forms on images that contain things other than
faces.

3.2 Loss of Information

Once the model was trained and able to ad-
equately recolor black and white images, I de-
cided to to extend the project to see how well
the model can recolor an image with missing
information.

Different percentages of random pixels were
removed from the black and white images and
then recolored. Figure 2 shows the results of
recoloring an image that is missing 1%, 5%,
10%, 25%, 50% and 75% of pixels selected at
random. The pixels removed from the image
were replaced with gray pixels i.e had a pixel
value of 0.5 on a scale of 0-1. Replacing miss-
ing information with gray pixels replaced lead
to results that were more moderate compared
to replacing the pixels with white (0.0) or black
(1.0) pixels. Using white pixels created im-
ages that became increasingly more yellow and
black pixels rendered the last image (75%) al-
most completely black. When the image is re-
colored with gray pixels, the outline of the orig-
inal image can be clearly seen, and a majority
of the color (brown hair) is recolored correctly.

Figure 2: A (a) ground truth, (b) black and
white, and (c) recolored image, as well as ver-
sions that were recolored by the model after
having 1% (d), 5% (e), 10% (f), 25% (g), 50%
(h), and 75% (i) of the black and white version
removed.

For two images x, the original image and
y, the recolored image with missing informa-
tion, with N pixels each, the overall perfor-
mance of the model was based off of the av-
erage distances between to two corresponding
pixel values of the original image and the recol-
ored one. That is, the score of the model was
computed as

score =
1

N

N∑
j=0

distj (1)

where distj is the distance between pixel
values across the two images. Since rgb pixel
values can range anywhere from 0 to 1, recol-
ored images that return average scores closer to
0 when compared to the original image means
that the model did a good job recoloring. Eq.
1 can then be used to look at the overall per-
formance of the model as a function of percent
lost, as seen in Fig. 3.

It can been see from Fig. 3 that percent loss
gradually increases as average pixel difference
increases. This makes sense because when the
there is less missing information I expect the
average pixel difference to be much lower. Oth-
erwise, an image with most of its information

3



missing will be recolored less accurately with
our current model.

Figure 3: Performance of the model as a func-
tion of the percent of pixels removed from the
original black and white image.

3.3 Random Noise

One of the issues with the methodology of
the previous section was that entire , and in ad-
dition, every pixel was treated the same by be-
ing converted to a purely black one. In real life
scenarios, images may contain random forms
of noise that are non-uniform. One can imag-
ine that during some scanning process or dig-
itization of a physical black and white image,
some random noise is introduced. So instead of
completely removing information from an im-
age, it may be more beneficial and instructive
to introduce a sort-of noise into the images,
randomly tampered with the pixel values in a
non-uniform way. As we will see, this method-
ology turns out to improve the performance of
the model in certain situations. An example of
this technique can be seen in Figure 4, where
1%, 5%, 10%, 25%, 50% and 75% of the pix-
els were randomly selected and tampered with
by adding some noise. Since the pixel values
lie within a range of 0-1, random float values
within this range were added to the selected
pixels in order to simulate noise.

Figure 4: A (a) ground truth, (b) black and
white, and (c) recolored image, as well as ver-
sions that were recolored by the model after
having 1% (d), 5% (e), 10% (f), 25% (g), 50%
(h), and 75% (i) of the black and white version
tampered with.

Similar to the previous section, an anal-
ysis of the average score of the model as a
function of percent loss can be done. As ex-
pected in the previous situation, the average
score/pixel difference increases as the percent
of information tampered with increases, how-
ever, this time there were a few images where
introducing some noise actually improved the
performance of the model. This behavior can
be seen in Figure 5, which shows the perfor-
mance of the image in Figure 4.

Figure 5: Performance of the model as a func-
tion of the percent of pixels tampered with
from the original black and white image.

4



What is interesting to note is that for this
image, it seems as though it is beneficial to add
some random noise to the black and white im-
age before recoloring to get an overall higher
final score. After looking at the recolored im-
ages given in Figure 4, it does look like some of
the more noisy images retain some of the colors
better than the less noisy ones. For example,
Figure 4c at 0% noise seems to have some un-
necessary blue shades appearing at the edges
of the woman’s hair, yet the higher percentage
ones seen in Figure 4(g-i) seem to lack this.

4 Conclusion

Although the model works, it can be im-
proved in several ways. In hindsight, I would
have made the training set have images from
the CelebA-HQ data set. The training data
that I used is different enough from the test-
ing data that it might have affected the per-
formance of the model. I would also make
sure that the training set consists of faces that
have various skin tones because currently, the
training set is bias by containing only images
of white women. We can see from the results
that although the model is able to gauge the
lightness/darkness of skin tone, the recoloring
of the last image is not as clear as the first few
recolorations. Although the model may per-
form better with images that are of uniform
color, it is important to make sure that the
model is improved to work well with a diverse
data set to prevent any bias.

In terms of calculating the score for the
models performance, there might be a better
way to do it. Currently, I compare total aver-
age pixel value between the original image and
recolored image. A low average value is indica-
tive of the fact that the model did recolor an

image well, however this may not be true. If,
for example, an original image has very vibrant
colors and the recolored image is potentially re-
colored very well, but with more muted colors,
then the score might be low. This would not
be an accurate representation of how the model
is performing. To remedy this, I could instead
calculate the average pixel difference when the
final image is in the Lab color space, instead
of RGB as it is now. By doing this, images
that are of similar color but at a different level
of brightness will not be rewarded with a low
score.

In addition, some shortcuts were taken dur-
ing the training process due to a lack of com-
puting power and proper resources. I used
Google Colab to train the model, but it was
for 2 hours at most before my sessions were
terminated. I saved the weights for the first
model that produced a recoloration that was
not skewed to one of the a/b channels. If I
could I would properly train the model with
more data and for a longer period of time in
order to produce the best possible results.

5 How to Run Model

My project consists of a Jupyter Note-
book with the code and a file called
modelmain.h5thatcontainssavedweightsforthebestperformingmodel.Inordertotrainthemodelfromscratch, thecellcanbeuncommented.Otherwise, avoidthiscellandloadthemodel.h5file.Thecodeiscommentedtoshowwhichcellstorunandallpathfilesarecorrect.

References

[1] Moses Odhiambo. Celeba-hq resized
(256x256), 2021.

[2] Emil Wallner. How to colorize black white
photos with just 100 lines of neural network
code, 2017.

5


