Robotic Arm with Mobile Platform

Mingyu Pan
Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, USA
mpan5 @stevens.edu

Abstract—The work done during the Spring 2022 semester is
a continuation of research results from previous semesters. For
the spring semester, our main objectives are: First, design and
build a platform with mobility capability that can support the
weight of the robotic arm and all other necessary components.
Second, refine the voice recognition algorithm that had already
been integrated into the Jetson Nano system to achieve command
words recognition. By using components that were purchased
but not used last semester, we will also install a more advanced
2D laser scanner on the platform for automated world map
generation. In the end we designed and constructed a sturdy
platform with mobile capability, improved the ASR functions and
installed the spinning LIDAR on the platform and integrated it
into the Jetson Nano system. NOTE: The members of the team
will be referred by their initials. IZ for Ilana Zane and MP for
Mingyu Pan.

Index Terms—control, robotic platform, voice recognition

I. INTRODUCTION

ROS nodes are widely used to enable proper communication
and control between different components in our robotic sys-
tem. Currently, the Interbotix Reactor X150 robotic arm and
the Raspberry Pi Camera Module V2 are able to work together
using custom written ROS nodes. The USB microphone was
used for speech recognition and was integrated into the system
last semester. Nodes for communication between components
were written for the object detection module to detect and
output ids as well as name of all detected objects on a monitor.
During this semester’s research, most challenges were solved
while other new challenges emerged due to the introduction
of new components and algorithms.

In our proposal at the beginning of the semester and in
the mid-stage report, we stated that the current Jetson system
was able to achieve automatic speech recognition through a
plug-in microphone and was able to perform accurate single-
word and short-sentence recognition. Later this semester, we
planned to integrated a keyword recognition function provided
by jetson-voice. By modifying the objection detection script,
we enabled the system to output the names, identification num-
bers and number of detected objects in our Ubuntu terminal
through ROS. We also stated that the old platform was not
stable enough, so a new mobile platform was designed and
constructed. Unfortunately, We were informed by the ProofLab
that all large 3D printers would not be available for several
months due to maintenance, so we had to discard our original
custom platform design. Ultimately, all the components to

Ilana Zane
Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, USA
izane @stevens.edu

Shucheng Yu
Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, USA
syul9@stevens.edu

build the platform were purchased from gobilda.com and
constructed by us. The new platform was proven to be very
modular and rigid enough to support the arm and all other
sub-functions while remaining stable. The mecanum wheels
also provided better maneuverability compared to previous
traditional rubber wheels. The new, more advanced LIDAR
system also enabled the automated generation of a world map.
The generated map was displayed in RVIZ and would be useful
in future dynamic path planning researches. We divided our
work as follows: MP worked on designing and constructing a
new platform as well as integrating the LIDAR to the Jetson
to enable automated world map generation. IZ worked on
improving the existing software functions of the Jetson Nano
system to ensure smoother communication between the voice
detection algorithm and various ROS nodes in the system.

Our paper is structured as follows. In the second section,
we discussed various problems encountered during our re-
search and the updated components list. In the third section,
we presented our solutions to those problems by providing
our ideas and methods. Detailed descriptions and algorithms
were provided to explain our research process. In the fourth
sections, we presented our analysis and results of the solutions
using our models constructed both in Fusion and in real-life.
Finally, in section five, we conclude our paper by summarizing
the research done in this semester and proposed several other
research directions for future studies.

II. PROBLEM STATEMENT

At the beginning of the semester, we set our first goal
to enable the Jetson Nano system to recognize recognize
specific words such as “forward”, “backwards”, “’stop”, ’go”,
etc, using the automatic speech recognition framework already
implemented in the system. The voice-recognition algorithm
was still rudimentary and can not yet communicate with other
components in the system. Enabling proper communication
was one of the goals. An original goal of ours was to refine
the object detection algorithm in order to reduce the number of
object it detects. We decided that although, it would be more
complicated, it would be better to take a step back and begin
incorporate a voice recognition module to the ROS system.
Our second goal was to research on designing and constructing
the new platform. In the previous semesters, the development
of the platform was put on-hold since the research was focused
on improving the software of the system. We had concluded

that the previous platform was too unstable for our system. As
a result, we decided to design and construct our own.

The purpose of the chassis is to allow for the robotic arm
to have mobility. A goal that we worked on this semester was
to allow the robotic arm to communicate with our microphone
via the Jetson. On a high level, we aim to a fully functioning
node that can receive voice commands from the user via
microphone, then store these commands to a database that
will eventually connect to our camera module, as well as the
module that controls the motion of the chassis. Finally, the
LIDAR would be used to plan a path towards this object while
avoiding obstacles.

The original plan was to custom design a platform using
Fusion360 to 3D print parts. However, after our design was
submitted, we were informed that the parts could not be
printed out in time due to the machines being repaired in the
ProofLab and we did not find a suitable third-party printer.
As a result, we decided to purchase platform frame parts
from gobilda.com. We did not want to purchase a pre-made
platform since platforms with lower prices were not suitable
for modular design and could not fit components such as the
Jetson Nano, a power supply, and other necessary hardware
inside. The platform we constructed using various components
was proven to be modular and stable enough for our research
purposes. We also upgraded our traditional rubber wheels to
mecanum wheels. The designing and construction process of
the platform will be detailed in the next section. In conclusion,
several challenges needed to be addressed in this paper such
as:

1) Improve the speech recognition module by redesigning
relevant ROS nodes and custom scripts to extract keywords.
Ensure algorithms and hardware can be integrated with the
rest of the system. 2) Research on the construction of the
vehicle and other essential parts such as wheels and LIDAR,
as well as other software algorithms that can integrate separate
components to ROS using custom nodes or other methods.

The components we used in our research are listed here.
New components were used and installed on the platform
during our research and we decided to include an updated
components list here:

1) Trossen Robotics ReactorX150 Robotic Arm

2) NVIDIA Jetson Nano Computer

3) Monitor for Head Mode operation and setup of Jetson
Nano

4) RPLIDAR-A2 Laser Range Scanner

5) Raspberry Pi Camera V2 Module

6) Kinobo USB 2.0 Microphone

7) Various aluminum frames and components for platform
construction(50 pieces)

8) goBuilda 96mm Mecanum Wheels and supporting hubs
for connections

9) DZS Elec DC-DC Buck Converter Module 5.3-32V 24v
to 1.2-32V 5v 9v 12A 160W Large Power Adjustable
Step Down Voltage Regulator CC CV Power Supply
with LCD Display

10) Alitove 12V 15A 180W Power Supply Transformer
Switch AC 110V/220V to DC 12V 15amp Switching
Power Adapter Converter LED Driver for LED Strip
Light CCTV Camera Security System

4 X Cytron 10A Dual Channel Bi-Directional DC Motor
Driver, 5-25V, 30A Peak

Milapeak 12pcs 8 Positions Dual Row 600V 15A Screw
Terminal Strip Blocks with Cover + 400V 15A 8 Posi-
tions Pre-Insulated Terminals Barrier Strip

1)

12)

In the next section, we detail our research ideas and results
by explaining our process through constructed models.

III. IDEAS AND DESIGN PROCESS

For our mobile platform, we needed to research on de-
signing our own since it would give us the most freedom
to be creative. It was proven that a pre-made chassis sold on
websites like Amazon could not allow us to install components
purchased from various websites and sources, generally due
to the lack of screw holes on the surface. Also, almost all
cheaper chassis’s sold were built to serve one or two purposes
only, with simple motor control using traditional, non-turning
wheels. Those platforms also did not account for extra weight
that needed to be put on the surface since all components were

usually put inside the chassis.
£ &

Fig. 1. The previously used chassis. Note the lack of screw holes, thin interior
space and bulky rubber wheels.

We also had to give up the idea of 3D printing our own
chassis since we could not get a definitive timeline on when
the platform could be printed. We decided to purchase our
parts from gobilda.com. The website has great reputation on
providing high-quality parts for both small and large projects.
The parts provided on the website were also all very modular,
which gave us the freedom to modify our design freely without
needing to drill extra holes on the platform.

Next, we detail our construction process for the platform.
Two U-channels with length of 432 millimeters were used
as mounting points for the 4 mecanum wheels and motors.
Since the arm has a max reach around 550 millimeters, to
ensured that the arm can still reach an object no matter where
the arm was installed on the surface, we chose the longer
U-channel out of a set of options, taking into consideration
the shift of center of mass when the arm was in operation
to maintain stability if the arm was at its max span. Two 264

millimeter U-channels were then used to connect the longer U-
channels to form a rectangular platform. Quad block mounts
and screws were used to connected all U-channels together.
There are sufficient amount of screw holes on the platform
for us to move the shorter U-channels along the longer U-
channel so the platform can accommodate wider components
such as the Jetson and power supply.

Next, we needed to design the output shafts for the chassis.
Since we were using U-channels instead of design of our own,
the motors could not be connected directly to the mecanum
wheels due to the width constraint of the channels. As a result,
we used several 8 millimeter REX bore miter gear to transfer
the power of the motors to the wheels. This enabled us to
install the motors inside the long U-channel to save space
on the platform. Four 80 millimeter REX shafts were used
to connect the miter gears to the U-channels. Ball bearings,
thrust washers and flanged bearing were used to secure the
connections between the shafts, miter gears and the U-channels
to create as little friction as possible when the shaft was
spinning. Next, 8mm REX bore Hyper Hubs were used to
connect the mecanum wheels to the REX shafts.

Miter gears, REX Shaft &
Other Components

Fig. 2. Platform frame construction. The position of the 264mm U-channel
can be changed to accommodate for various component sizes. (Only motors
and the wheels were installed in this picture).

Next, we needed to install the drive motors inside the long
U-channels. This was the hardest part in our assembly process
due to several reasons. First, the motors we were using had
neither a hexagon shaped shaft, nor were the shafts wide
enough to fit inside the miter gears. Also, there were no screw
holes on the outside of the motors, which meant we could not
secure the motors to the U-channels. Due to this, we decided to
design an element using Fusion360 that can secure the motors
to pattern mounts and allow force transfer from the motor shaft
to the connected miter gear. The designed part was small, so
we could 3D print it on our own (Fig.3 & 4).

The motor was secured to a quad block pattern mount using
pattern spacer and screws. The miter gear was installed on

Fig. 3. Designed connection between motor and miter gear.

Fig. 5. Close up of the connection between the motor and the mecanum
wheel using miter gears and custom designed parts.

the modified shaft , with a thrust bearing placed between the
spacer and miter gear to reduce friction when the motor was
spinning. The output shaft gear and drive motor gear were
placed at an 90 degree angle, enabling force transfer from the
motor to the wheels. The wheels were also able to function
independently.

13

Fig. 6. functions. Sourced from:

wheels
https://www.roboteq.com/applications/all-blogs/5-driving-mecanum-wheels-
omnidirectional-robots

Mecanum

Here, we will justify our decision of using mecanum wheels
instead of regular wheels.

Fig. 7. Mecanum wheels purchased from gobilda.com

We determined early in the semester that better wheels
needed to be used to increase the stability and performance
of the entire platform. We measured the new platform to be
16.95 Ibs based on our measurements when all components
were put on the platform. The solid construction provided
excellent rigidity even when the platform was at full load,
which provided significant improvement compared to the old
design. The Mecanum wheels also provided much better
maneuverability [5], since they enabled the platform to move
horizontally, diagonally, and rotate around a single axis. We
also have individual control of each motor and no front or back
axles were needed, so the directional motion of the platform
would also needed to be planned.

Based on our research, Mecanum wheels would also better
suit future path-finding algorithms such as A-star search [3].
In some algorithms, the robot was treated as a point mass.
This gave the Mecanum wheels an advantage since future
researcher may not need to code an additional turning algo-
rithm if the platform is traversing in a tight environment, since
independent control of the motors can enable the platform to
perform a single-axis turn.

In this semester, we also acquired a more advanced laser
scanner. The previous LIDAR used was a Garmin Lite V3. It
was able to detect the distance between the receiver and an
obstacle in front of it. However, it could not publish more com-
prehensive information about the environment the platform
was in. As a result, the RpLIDAR was used. The RpLIDAR a2
was a spinning LIDAR that could turn counterclockwise and
perform a 360 degrees laser scan of the surrounding. It had a
sample rate of 10Hz, 8000 points and could detect a maximum
range of 16 meters. The detection rate would be sufficient to
generate an area map automatically while the platform was
moving.

When operating independently, the RpLIDAR was able to
generate an area map, where the red dots indicated an obstacle
detected. We also included pictures taken from the real life
environment to verify the accurate of the generated map.
Several landmarks were indicated in the picture such as the
west curved wall, divider 1, divider 2, and the position of
several doors (Fig. 8 & 9).

Divider 2

Fig. 9. Testing Environment - East, Facing Kitchen & Doors.

The area maps generated using the scan are included in
Figure 10 and Figure 11. The scan was performed at at
a stationary position, 180cm above ground, to avoid small
obstacles blocking the laser. In Figure 11, the position of the
LIDAR was changed to in front of Door 1, at the same height,
to scan the kitchen. Note that the previous map of the living
room became inaccurate due to increased scanning distance
and blockage of laser due to Divider 1.

isplays
 Global Options

Fixed Frame laser

[
Background Color [l48;
Frame Rate 30

+LaserScan v

+ < Status: Ok
Topic /scan
Unreliable
Selectable v
style Flat...

West Curved Wall
(Noticable Curvatures)

Alpha 1
Decay Time [
Position Transformer XYZ
Color Transformer Inte...
Queue Size 10

fsoutn Fawal

e (m)
nt size in meters.

Fig. 10. Scanned Result - Living Room - LIDAR Position 1.

We noticed that in LIDAR position 2, due to the small space,
most of the South and North wall was not scanned due to
divider 1 blocking the laser. Door 2 was also not shown due
to the fridge. In conclusion, however, the scanning results were
very accurate.

To expand on its functionality, we wanted the LIDAR to
create an persistent area map, which would lay some basic

& Displays
* *Global Options
Fixed Frame laser
Background Color Was;
Frame Rate 30
Default Light v

o Fix No...
* = Grid v
- ~LaserScan v
+ < Status: Ok
Topic [scan
Unreliable
Selectable v
Style Flat.

Alpha 1
Decay Time 0
Position Transformer XYZ
Color Transformer Inte...
Queue Size 0
size (m)
Point size in meters.

Add

Fig. 11. Scanned Result - Kitchen - LIDAR Position 2.

ground work for the path planning objective. The RpLIDAR
was suitable for simultaneous localization and mapping, or
SLAM, which enabled the platform to explore a previously
unknown environment while keeping track of the platform’s
location. This method is widely used in autonomous mobile
robots. Based on our research, we decided to use ROS Hector
Mapping and integrate it to the RpLIDAR to enable automatic
closed area map generation.

We will now detail our operation method in this following
section.

First, we cloned the ROS packages from
github.com/Slamtec. Slamtec is the company that designed
and manufactured the RpLIDAR. The designed ROS nodes
and testing applications were cloned to the Jetson Nano
catkin workspace folder to enable proper communication
between the ROS nodes of the RPLIDAR with our ROS
Melodic system. No errors were produced when compiling
the workspace. We first ran a test trial to determine if the
LIDAR was working properly or not. The output of the
LIDAR was outputed in RVIZ. RVIZ is a graphical interface
for ROS that visualizes various information outputted by the
connected component. The output was included in Figure 10
and 11.

It was noted that in the dotted map above, an image outsine
of the obstacle could persist on RVIZ only if the LIDAR was
actively scanning it. If the LIDAR was to change its position,
say for example, going in to another room, the knowledge of
the previous room would be lost.

We think it was important to generate a persistent area map
in our research since a map will make it possible to determine
a starting point and a goal for the platform while it is in
motion. Based on our research, we determined that Hector
SLAM would work well in our system and environment [9].
There are many types of 2D simultaneous localization and
mapping, including but not limited to: HectorSLAM, Gmap-
ping, KartoSLAM, Core SLAM, LagoSLAM. HectorSLAM
utilizes robust scan matching to generate an accurate area
in real-time while tracking its own position [4]. The high-
scanning frequency of the RPLIDAR meant it fit well with the
HectorSlam algorithm, and the scanning range of the LIDAR
meant an accurate image of the obstacle outline could be
produced. HectorSLAM also did not require a huge amount of

processing power when running continuously. High CPU load
had been proven to be a huge problem in our research since the
system needed multiple programs to run at once and lagging
was always an issue. A low resource consumption algorithm
could make our experiments more efficient.

Gmapping is another widely used mapping algorithm, and in
theory, should work better than HectorSlam due to its extensive
application. However, during our research, it was not the
case for the RPLIDAR since HectorSLAM performed much
better than Gmapping. Many researchers also determined
HectorSLAM outperformed Gmapping in several experiments
[1] [2] due to several angle and scan range requirements by
Gmapping. As a result, HectorSLAM remained as our primary
choice of algorithm.

IV. RESULTS AND ANALYSIS

In HectorSLAM, several main nodes include hec-
tor_mapping that was the SLAM node, hector_geotiff
that saved the map and robot’s trajectory, and hec-
tor_trajectory_server that saved tf-based trajectories [6]. To
setup HectorSLAM properly with the LIDAR, we modified
several values. For example, base_link was used instead
of base_footprint to include pitch and roll angles [7], and
included the information broadcast by the LIDAR scanner
along with base_link. After catkin_make, the errors were
solved and the entire system compiled correctly. After giving
proper permission to the USB port, we ran the example
using rosrun rpLIDAR_ros rpLIDAR.launch and roslaunch
hector_slam_launch tutorial.launch to produce the following
area map below:

Lo oul... 1ldp
Draw Behi...
Resolution 0.05
Width 2048
Height 2048

» Position -51.225;-51.2...

» Orientation 0;0;0; 1
Unreliable
Use Times...

- Path v

» v Status: Ok
Topic
Unreliable
Line Style Lines
Color [025; 255; 0
Alnha 1

/trajectory

Fig. 12. Scanning result using HectorSlam.

Based on the results produced, we determined that the
RpLIDAR and HectorSLAM were able to produce an very
accurate area map of the environment that included exact
positions of all obstacles detected and the position of the robot.
The green line on the map also recorded the route taken to scan
the entire room. The map was exported using the map_server
ROS node. A .yaml file was created inside the catkin_ws
folder where the map could be exported into another RVIZ
environment.

We also decided to include the ASR classification from
the jetson-voice repository. The ASR classification algorithm
is trained using the QuartzNet model from NVIDIA. The
QuartzNet model is a deep neural network made up of building

blocks of a specified value. In comparison with the normal
automatic speech recognition, the classification algorithm re-
quired lesser resources from the processor since only chunks of
audio input were needed to enable classification. The Match-
boxNet [11] classification algorithm (based on the QuartzNet
architecture) is a model that was trained to recognize 12
keywords such as “left”, right”, ’stop”, ”go”, which would be
essential to control the motion of the platform when integrated
to the system. Figure 13 shows a flowchart representing the
layers of the QuartzNet NN. The model is composed of
multiple blocks with residual connections between them. Each
block consists of one or more modules with convolutional
layers, batch normalization, and ReLU layers [10]. One of
the toughest issues that we currently face in our project is the
computing power of the Jetson and accompanying hardware.
Using a smaller model like MatchboxNet for classification
provides advantages such as it being faster to train and
optimize upon running it with other modules. Therefore, it
is much more feasible to deploy this model on hardware, like
our Jetson, that has limited computing power [10]. Since the
network was tested on a very small subset of data from the
Google Speech Commands dataset, there is room for error.
The model did not always recognize our speech patterns and
was sensitive to noise. This is a possible issue that we may
have to worry about later when connecting our voice module
to the robot.

Cross Entropy

1x1 Conv
Out Ch = # classes

A
Dropout
t
RelLU
it
+—
1

Batch Norm

i

1D Depthwise +
Pointwise Conv (K)

Conv-BN-ReLU
Kernel Width = 1
Out Ch = 128

Conv-BN-ReLU
Kernel Width = 29°K
Out Ch = 128

Epilog
Dilation:2

Batch Norm

l

Repeat R ¢ 1x1
imes e Pointwise
Convolution

Dropout

t

RelU

t

Batch Norm

Conv-BN-RelU
Kernel Width = 11*K
Out Ch = 128

Prolog
Stride:2

t

hwise +
Pointwise Conv (K)

Fig. 13. CNN Model cited from Nvidia. https docs.nvidia.comdeeplearning
(Accessed May. 1, 2022)

Figure 14 shows the results from testing the MatchboxNet
module. In order to deploy the ASR classification module, we
had to run it as a part of a Docker container, which contained

'unknown' (0.384)
'ves' (1.000)
'no' (1.000)

'up' (1.000)
'down' (1.000)
'left' (1.000)
'left' (1.000)
(1.000)
(1.000)
'off' (1.000)
'stop' (1.000)
'go' (1.000)

'go' (1.000)
'silence' (0.639)
'silence' (0.576)

'right'

"on'

Fig. 14. MatchboxNet Outputs

all of the code and dependencies that were required. Through
the container and a shell script we were able to detect whether
the microphone was properly connected to the Jetson and as
an audio input. Then, through a python script we were able to
launch our file, asr.py.

For each word that is spoken into the microphone, the model
assigns the word to its respective class with a number asso-
ciated to the probability of the spoken word being correctly
assigned to that class. The silence class at the end of the output
sequence represents that the user has stopped speaking.

V. CONCLUSION

We conclude our paper by presenting several goals we
achieved during this semester’s research. We designed and
constructed a platform with mobile ability, implemented a
more advanced LIDAR for dynamic map generation. We also
believe that dynamic path planning is possible with further
research. Successful results had already been produced in
another simulated environment, where a waffle type turtlebot3
with a laser scanner was able to produce an area map and avoid
dynamically moving obstacles through A*, a dynamic obstacle
avoidance algorithm. Since the result was also produced in
RIVZ, we believe an automatically moving platform with
obstacle avoidance ability can be made possible. We have also
incorporated and semi-implemented a way to direct commands
to the Jetson that will be crucial when mobility of the
chassis is finalized. The use of the MatchboxNet module has
significantly reduced the computational toll of classification
on the Jetson, which is important as we will soon be running
multiple modules in parallel that connect our different pieces
of hardware.

REFERENCES

[1] A. Francescon, “GMapping and RPLIDAR”, geduino.org.
http://www.geduino.org/site/archives/35 (accessed Apr. 15, 2022).

[2] A. Francescon, “Navigation stack test: GMapping vs Hector Slam”,
geduino.org. http://www.geduino.org/site/archives/36 (accessed Apr. 15,
2022).

[3]

[4]

[6]
[7]

[8]

[9]

(10]

(1]

A. Stentz, ”Optimal and efficient path planning for partially-known
environments,” Proceedings of the 1994 IEEE International Confer-
ence on Robotics and Automation, 1994, pp. 3310-3317 vol.4, doi:
10.1109/ROBOT.1994.351061.

J. M. Santos, D. Portugal and R. P. Rocha, ”An evaluation of 2D
SLAM techniques available in Robot Operating System,” 2013 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), pp. 1-6, 2013, doi: 10.1109/SSRR.2013.6719348.

M. O. Tatar, C. Popovici, D. Mandru, I. Ardelean and A. Plesa,
”Design and development of an autonomous omni-directional mobile
robot with Mecanum wheels,” 2014 IEEE International Conference
on Automation, Quality and Testing, Robotics, 2014, pp. 1-6, doi:
10.1109/AQTR.2014.6857869.

S. Kohlbrecher and J. Meyer, “hector_slam”, wiki.ros.org,
http://wiki.ros.org/hector_slam (accessed May. 1, 2022).

S. Kohlbrecher and J. Meyer, “How to set
up hector_slam for your robot”, wiki.ros.org,
http://wiki.ros.org/hector_slam/Tutorials/SettingUpFor YourRobot
(accessed May. 1, 2022).

S. Rosa, A. Russo, A. Saglinbeni and G. Toscana, *’Vocal interaction with
a 7-DOF robotic arm for object detection, learning and grasping,” 2016
11th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), 2016, pp. 505-506, doi: 10.1109/HRI.2016.7451828.

S. Saat, W. A. Rashid, M. Tumari and M. Saealal, "HECTORSLAM 2D
MAPPING FOR SIMULTANEOUS LOCALIZATION AND MAPPING
(SLAM),” Journal of Physics Conference Series, vol. 1529, no. 4, April
2020.

S. Kriman et al, "QUARTZNET: DEEP AUTOMATIC SPEECH
RECOGNITION WITH 1D TIME-CHANNEL SEPARABLE CONVO-
LUTIONS,” October 2019, doi: 10.48550/ARXIV.1910.10261, 22.

S. Majumdar and B. Ginsburg, "MatchboxNet: 1D Time-Channel Sepa-
rable Convolutional Neural Network Architecture for Speech Commands
Recognition,” October 2020, doi: 10.21437/interspeech.2020-1058.

