Jazz Solo Generation using Long Short-Term
Memory Recurrent Neural Networks

Grant Simmons

Ilana Zane Justin Ho

Department of Electrical & Computer Engineering Department of Electrical Engineering Department of Computer Science

Stevens Institute of Technology
Hoboken, NJ
gsimmons @stevens.edu

Abstract—Music and musicality are uniquely human expe-
riences, with much in the way of allowing people to express
and impart thoughts and ideas through the arrangement of
sounds. We attempt to encode music—specifically jazz solos—in
such a way to facilitate deep learning through a Long Short-
Term Memory recurrent neural network model to observe if we
can impart artificial musicality in machines in generating novel
artificial jazz solos.

I. INTRODUCTION

Replicating human behaviors using computers has re-
mained an elusive goal for engineers. With the advent of
deep learning techniques, computers become more capable of
generating seemingly human ideas by the day. Jazz music is an
art form fueled by real-time improvisation. The greats of Jazz
music spend their lives mastering the intricacies of instruments,
music theory, and quick thinking to put forward some of
the most impressive feats in music. Decoding the structure
and patterns behind their solos has perplexed researchers for
decades, and jazz solos continue to be best formulated by the
humans who dedicate their life to the craft. We venture to
create jazz solos using modern machine learning techniques
and evaluate their statistical and audible similarities to some
of the best solos of all time. By evaluating the successes and
failures of such an effort, we intend reflect on the aspects
of great jazz solos that make them so notoriously difficult to
rival and formulate suggestions for future ventures in music
generation.

We examine the solos of various jazz musicians by utilizing
the Weimar Jazz Database [1], a project developed by the Jaz-
zomat Research Project, which offers a free SQLITE3 database
of famous jazz solo transcriptions specifically formatted for
convenient statistical analysis. This database contains MIDI
representations of over 450 jazz solos and contains additional
contextual information crucial for comprehending each solo’s
structure. The MIDI format allows for the convenient extrac-
tion and analysis of the melody by describing the properties
of each note in sequence. This format facilitates the solo’s
convenient quantitative and statistical analysis by providing
discrete, quantized values describing the properties of each
note.

At a fundamental level, the algorithm we implement at-
tempts to predict each successive note in a solo by analyzing
the qualities and context of the current note. After generating a
prediction, the model is trained based on its ability to correctly

Stevens Institute of Technology

izane @stevens.edu

Stevens Institute of Technology
Hoboken, NJ
jhol @stevens.edu

Hoboken, NJ

generate the immediately succeeding note in the solo. This
form of learning is conducive to the Recurrent Neural Network
(RNN) model, which consumes as input an analysis of the
model’s previous state when predicting new values. A common
RNN for music generation is the Long Short-Term Memory
(LSTM) model, which can learn to recognize an important
input, store it in the long-term state, preserve it for as long
as it is needed, and extract it whenever needed. Because of
this, the LSTM layers are successful at capturing long-term
patterns in audio recordings and more [2] We compare the
results of the LSTM model against the already existing song
samples to evaluate the performance of the model. Following
solo generation, the melody is recombined with a backing
track that will be generated with an outside source to assist
in providing context to the melody during evaluation.

The first main algorithm we implemented was an ARIMA
model that analyzed a jazz solo as a time series and made
predictions for future notes. The results show that the current
model is underfitted, but provided information about the sta-
tionary properties and trends of the data. The second algorithm
we implemented is the RNN in order to make stronger and
more realistic predictions for future notes. The third algorithm
we implemented is a refinement of our second algorithm—
we use a deeper RNN model using techniques from existing
research to better generalize our model to the dataset, which
reduced overfitting and created an overall more accurate and
musical model over the simpler RNN.

II. RELATED WORK

A number of approaches to jazz solo generation have been
proposed and experimented in an attempt to encode musicality
in machine learning models. Great efforts have been made
into finding the best fit approach across a great swath of
areas in machine learning, from neural network approaches
to evolutionary approaches to probabilistic approaches.

Deep Learning. Deep learning is undoubtedly an extremely
strong tool in identifying and replicating the underlying pat-
terns present in datasets. Despite the inherent opacity problem
of deep learning models, the power of these models are a
perfect fit for problems that cannot be properly understood by
humans, which would ideally fit in encoding musicality and
be applicable to our goal in jazz solo generation—however,
despite the power of deep learning, these models often need a
very large dataset to work with to properly learn the underlying

patterns, which does not exist for jazz solos. An approach to
address this problem to this problem is through the use of
“transfer learning” [3[], where a model takes knowledge learned
from one task and applies said knowledge to the goal task.
However, Hung et al. finds that this approach has marginal
returns [3|].

Genetic Algorithms. While in a different sense than deep
learning models, genetic algorithm models can also be power-
ful tools in processing and searching for solutions in datasets
heuristically. However, the use of heuristics is where the
problem arises in genetic models: since genetic algorithms
use the concept of “survival of the fittest” to decide which
candidates “survive,’ the fitness heuristic must be defined,
which is can be largely subjective in the realm of music, as
Biles recognizes in his own implementation, where he himself
dictates fitness of the generated solos [4f]. Some have attempted
to abstract fitness heuristics, but without some specialized
genetic operators, these abstracted fitness heuristics can be
unwieldy and produce uninteresting results [J5].

Markov Chains. Markov chain approaches have been ex-
tensively tested in the past in the realm of jazz generation,
owing to it being computationally cheap to run and its ease
of implementation. Many of these experiments have found
that the Markovian approach to music generation produces
decent to good outputs, even going as far to state that “there
is indeed a strong Markovian dimension in musical surface in
most genres of tonal music, including jazz” [6]. These models
are defined by their “random walk” method, generating the
next step in an output probabilistically, which fits with the
improvisational nature of jazz. However, the randomness in the
random walk method is also exactly where the weaknesses lie
in Markov chain models for music generation, as these models
will not always tend towards the most probable solutions over
time, which will effectively require the deployment of deeper,
finer controls over the generation process [6].

III. OUR SOLUTION
A. Description of Dataset

Datasets of transcribed jazz solos, especially free and open
source datasets, are particularly scarce due to the scale of the
detail required to create an accurate transcription. One promis-
ing dataset was painstakingly compiled by The Jazzomat
Research Project, an organization dedicated to jazz analysis,
who painstakingly transcribed 456 solos of various artists and
styles. In their dataset, solos were transcribed, converted into
a MIDI representation, and further organized into a SQLITE3
database that contains descriptive metadata of each piece,
including the form, genre, composer, solo instrument, and a
complete MIDI representation of the solo. In the MIDI format,
each note played by each instrument is represented by a table
of values indicating various qualities of that note, such as the
volume, pitch, onset, duration, attack, and so on. By querying
the database to extract a tune and its relevant data, the tune can
then be individually processed to improve a model’s predictive
and generative capabilities.

The SQLITE3 database contains multiple tables, including
the melody and section tables. The melody table, for
example, contains the notes of every transcribed solo, sorted by
melody ID and event number (i.e. sequential note). The section

table contains abstracted information about the solo, such as
the underlying chords, the chorus number, and the measure
number, sorted by melody ID and a range of corresponding
melody events. In order to combine these database tables
into a single object appropriate for our model, the dataset is
preprocessed by querying all section data from the database
and annotating the solo’s notes with the corresponding section
information. This provides a note level granularity with contex-
tualized annotation to support the training algorithm described
in the following section.

While the melody transcriptions are inherently audible
information, the MIDI format allows for convenient visual
analysis as a result of its discrete pitch representation. Statisti-
cal information, such as the pitch and duration distributions
can be visualized by analyzing each note in the melody.
Furthermore, by visualizing the pitch value over the duration
of the solo, the contour of the solo can be arranged into a Gantt
chart format, which can be visually examined to evaluate the
fidelity and complexity of the solo. To observe the context
surrounding the solo, the section information can be overlaid
on the solo’s contour graph to visually correlate the melody
with the tune’s measures, sections, and choruses. This analysis
is helpful in ensuring the fidelity and correctness of the data
entering the model.

B. ARIMA Model

For our project we are treating the jazz solos as a time
series—we are analyzing the pitch of individual notes over
a certain length of time. Our ultimate goal is to create an
RNN to generate jazz solos, but we first created an ARIMA
(autoregressive integrated moving average) model to gain more
insight into our time-series and see if we can generate any
solos. In Figure 1 we display the training set in orange and
the testing set in green for one song from the dataset.

Time-Series of a Melody

70 1

Pitch
=

55 1

o 50 100 150 200 250 300 350
Time

Figure 1: Singular Melody as
Time Series

To create the ARIMA model, we choose the parameters
p, q, and d, where p is the number of time lags of the AR

(auto-regressive) model, ¢ is the order of the MA (moving-
average) model, and d is the maximum number of non-seasonal
differences. We conducted an ADF (augmented Dickey—Fuller
test) which tests the stationary of a time series and further
determines if we need to difference it. Our test determine that
the series is not stationary and we can therefore set d = None.
We chose p and ¢ based off of the following partial-correlation
and auto-correlation plots.

Autocorrelation

0.50 4

0.25

0.00 ll””TITTH?T”T'.'.oTTnThTTT 1 ‘1.??9-. e ll

Autocorrelation

-0.25

-0.50

-0.75

-1.00

Lags

Figure 2: Autocorrelation Plot.
Choose p =4

Based on Figure 2 we can see that there are four significant
lags so we choose the AR term to be 4. Next we created a
partial autocorrelation plot to describe the MA.

Partial Autocorrelation

1.00

0.75 1

0.50 q

0.25 1

0.00 0 17 o0t 'QOQT T .TT' = 'T I 1 ? oot
(Y} T T LA 551 l“ 10 g

Partial Autocorrelation

—0.25 -

—-0.50 1

-0.751

-1.00

Lags

Figure 3: Partial Autocorrelation
Plot. Choose ¢ = 2

From Figure 3 there are two significant flags so we can say
that the MA term is equal to 2. We create our model based off
of these parameters and train it on 80% of the data and use
the remaining 20% for testing.

Future Note Prediction

725 —— testing

prediction

70.0

67.5

-\ /\/\/\/\Wﬂ
I lINwRN

55.0

w

Pitch

52.5

300 310 320 330 340 350 360 370
Time

Figure 4: Prediction Results

Our ARIMA model results in poor predictions, probably
because this is not the right model to make jazz solo predic-
tions and the model is underfitting the data. Out of the 456 song
samples, our model only used 91 songs which may not have
been enough information for the model to generate its own
unique predictions. However, we have uncovered some useful
information related to the trends and stationary properties of
our dataset. This will help us make a more accurate RNN
model for the next segment of our project.

C. RNN Model

1) Training: In order to create the training set for the RNN,
we had to collect the right attributes from our dataset. We
decided to use the pitch, step and duration values. The pitch
and duration values were provided through the database. The
step value was calculated based off the difference between. We
used this as it made more sense to represent the time difference
between each note with respect to each other instead of with
respect for the beginning of the song.

pitch step duration
60.0 0.046939 0.036735
61.0 0.138776 0.122449
62.0 0.134785 0.118367

65.0 0.143673 0.117551

A W N = ©

67.0 0.163991 0.150930
563 57.0 0.087755 0.067347
564 56.0 0.157143 0.065306
565 57.0 0.114286 0.085714
566 60.0 0.108163 0.081633
567 57.0 0.000000 0.093878

568 rows x 3 columns

Figure 5: Training Dataframe

The data frame was then turned into a tensor that would
be used for the training set. The training set consists of

the notes from one song, which ranges between 300 to
600 notes. In order to expand the training set, we can use
more than one song. However, due to time constraints we
wanted to keep training as short as possible and therefore
used one song. To train the model, we created a function
called create_sequences (), that took in our dataset,
sequence length, and a normalization value. Within this func-
tion, we get a subset of the training data (containing pitch,
duration, and step) that is of a variable sequence_length
(data[:sequence_length]), then we obtain the same
information from data[sequence_length + 1], which
will be used as our label during training.

Our RNN will take this sequence of data, analyze the pitch,
step and duration and then make predictions for the pitch, step
and duration for the next note and compare it against the label.
The RNN continuously takes sequences of data until it has
reached the end of the training dataset. The library that we use
to turn our generated notes into midi files have pitch numbers
that range from O to 127, which is why when we create the
sequences we set the normalization value to 128 and normalize
our pitch values to be within this range.

2) Implementation: In order to calculate loss for the step
and duration we use MSE and encourage the step and duration
values to remain positive. For the pitch we use the SparseCate-
goricalCrossEntropy function from TensorFlow|[/] to compute
the cross entropy between our prediction and the label.

Our model consists of 5 layers: the input layer, one LSTM
layer, and three dense layers for the duration, pitch and step
[7]. We used the dense layers as hidden layers as we wanted
to find any connections or patterns between our three input
parameters. If we were using shorter sequences, just the three
dense layers might have been fine, but we found that using the
LSTM layer provided better performance as it can detect long-
term dependencies in the data. The model’s summary shows
all of the model’s layers including the names, output shapes,
and its number of parameters.

Model: "model"

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) [(None, 25, 3)] 0 [1

1stm (LSTM) (None, 128) 67584 ['input_1[0] [@]"']
duration (Dense) (None, 1) 129 ['lstm[0][0]']
pitch (Dense) (None, 128) 16512 ['lstm[0] [0] ']

step (Dense) (None, 1) 129 ['lstm[0] [0]"']

Total params: 84,354
Trainable params: 84,354
Non-trainable params: @

Figure 6: Model Summary

When we compute the loss through MSE and cross-entropy,
we find the individual loss values for the pitch, duration and
step. Then, we sum them together to find the overall loss. We
found that after training the overall loss was dominated by the
pitch loss as pitch loss was above 0. In order to correct this
we added weights of 0.05, 1.0 and 1.0 to the pitch, step and
duration, respectively[7]. We also used the Adam optimizer.
Below are the loss values before weights and optimization and
then after.

3/3 [1 - 2s 80ms/step - loss: 5.8220 - duration_loss: 0.6876 - pi

{'duration_loss': 0.6876155734062195,
'loss': 5.822010040283203,
'pitch_loss': 4.835506916046143,
'step_loss': 0.29888829588890076}

Figure 7: Before Weights and
Optimization

3/3 [] - 1s 28ms/step - loss: 0.2068 - duration_loss: 0.0234 - pitch,

{'duration_loss': 0.023447437211871147,
'loss': 0.20676033198833466,
‘pitch_loss': 2.9596779346466064,
‘step_loss': 0.03532899543642998}

Figure 8: After Weights and
Optimization

Figure 9 shows the resulting loss after training our model
for 50 epochs. We implemented early stopping and found that
MSE loss stopped changing significantly around 20 epochs,
therefore we stopped training at that point in order to reduce
overfitting.

050

045

040

035

LOSS

0.30

0.25

0.20

0 10 20 30 40 50
Epochs

Figure 9: Epochs vs. Loss

Finally, in order to generate note predictions, we fed a
sequence of data to our model and had it predict the next 120
notes. The number of notes generated can be changed. We
found that 120 notes is about 30 seconds of audio and provided
a good representation of how the RNN performed. When
generating our note predictions we used a hyperparameter
for the LSTM layer called temperature, which we set to
2.0. The temperature is used to control the randomness of
predictions by scaling the logits before applying our softmax
function. A higher temperature creates a more confident model,
but also more conservative. A lower temperature leads to
more diversity, but also more mistakes. Figure 10 shows the
dataframe of generated notes that is later converted to a midi
file that can be played back.

pitch step duration start end
0 37 0.184326 0.127027 0.184326 0.311353
1 62 0.745468 0.425646 0.929795 1.355441
2 55 1.154603 0.664142 2.084398 2.748540
3 75 1.320891 0.789546 3.405289 4.194835
4 61 1.422397 0.799789 4.827686 5.627475
5 68 1.450695 0.847832 6.278381 7.126213
6 64 1.484224 0.851270 7.762605 8.613875
7 65 1.499976 0.870692 9.262581 10.133273

8 67 1.515806 0.879202 10.778387 11.657589

9 65 1.531487 0.882672 12.309874 13.192547

Figure 10: Dataframe of
Generated Notes from RNN

D. Deeper Models

Our third model took inspiration from past researchers by
implementing multiple layers of LSTM models and adding
layers of dropout. By implementing a second LSTM layer
and creating a layer of dropout between the layers, as well as
between the last LSTM and the output layer, we can increase
the model’s ability to generalize to the solution space. This
becomes evident during training, as the model’s performance
increases more gradually, presumably due to the random
dropout and multilayer architecture. This trend is visualized
in Figure 11 By increasing the number of LSTM and dropout
layers, we can reduce model overfitting and develop a more
applicable model.

By additionally modifying the training weights of the
standard LSTM model, we also observed that the occurrence
of outlying pitch values drastically decreased, creating more
realistic solos, performed in a range much more similar to their
respective instrument.

309 1

3.08 1

307 1

Loss

3.06 1

3.05 4

3.04 4

Epochs

Figure 11: Epochs vs. Loss for a
RNN with multiple LSTM layers
and dropout

IV. COMPARISON

A key component of analyzing model performance is to
compare the resulting solo distribution with the distribution of
the training data. Such a correlation can demonstrate a similar
use of pitches used to establish a melody. In our testing, we
find that our generated solo contains a very similar pitch distri-
bution to the training data, roughly centered around the same
pitch. Whereas in the generated model the distribution of the
pitch is more concentrated, the training dataset shows a more
multi-modal distribution. This is in part due to the training
dataset’s consideration for chord changes in the underlying
harmony, causing a periodic shift in the center pitch, or root
note. Since our model does not consider the underlying chord,
we believe that the model rather generalizes the distribution
seen in the training data by averaging the numerical value of
the pitch values on which it trains. This trend can be observed
by comparing Figures 11 and 12.

Statistical Distributions (Training Data)

Figure 12: Training data note Pitch and
Duration statistical distribution

statistical Distributions (Generated Solo)

10

B ¥ &8 8 8

Figure 13: Generated solo note Pitch and
Duration statistical distribution

This distribution is highly dependent on the temperature
parameter, described above. Higher temperature values lead
to a more varying solo result, in effect creating a wider
pitch distribution. Figure 14 demonstrates distributions with
temperature values of 0.1, 0.5, 3.0, and 10.0.

Pitch Distributions of Generated Solos

0.100000 0.500000

£] © @
MIDI Pitch Value: MIDI Pitch Value
3.000000 10.000000

1

0
0 2 £ @ @ 100 0 0 © @ @
MIDI Pitch Value: MIDI Pitch Value

Figure 14: Pitch distributions for temperature
values of 0.1, 0.5, 3.0, and 10.0

With an immature model, we find that keeping smaller
temperature values, generally below 0.7, results in a reasonable
solo. Above this threshold, increasing variability is introduced
in the solo, creating more sporadic distributions and more
“avant-garde” solos.

Note duration distribution is also a key metric, as part of
the solo’s variability and surprise comes from varying note
sounds. A curious trend we observed in our analysis uncovered
a discrepancy between the training data and the generated solo.
We noticed that in solo generation, the model preferred to
generate notes with a duration value nearing zero. This could
be a result of underfitting the model to the training dataset, but
it may also be an oversight in how the data is preprocessed
and presented to the model during training.

Aside from statistical measures, the “contour” of the solo,
or how smoothly the pitch changes between notes, is also an
important consideration, as it can provide an idea of whether
the notes lie in an acceptable range for a given instrument or
vary too wildly to create an appealing solo.

Figure 15: An example contour from the
Weimar Jazz Database

Figure 16: An example contour generated from
the solo presented in Figure 13

These contours clearly demonstrate a range in which the
model is more likely to generate a note, which generally lies
within the range of notes presented during training. However,
the trained model also generated notes outside this training
range as a result of the inherent randomness of the model.

Arguably the most critical component for music generation
is its musical comprehensibility. A solo may perfectly match
the pitch and duration distributions of the training data, but if
the solo does not make harmonic sense or sounds generally
unpleasing, there may be room for improving the model.

We utilized the MIDITrail tool to visually and audibly
analyze the generated solo. In general, we found that the
solos, while maintaining relatively accurate note characteristic
distributions compared to the training dataset, sounded a bit

random. While we can observe general contour trends, such
ascending or descending phrases, that are generated with the
help of the LSTM model, the pitches of these phrases do
not seem to conform to a specific key or set of harmonically
agreeable tones. This can be rectified by creating a lower and
upper bound for the pitch range depending on the instrument,
however that is outside the scope of this project.

Existing implementations have used LSTM models to
generate jazz solos, such as the model developed by Shubham
Gupta [8]. We believe that the differences in our predictions are
due to our model’s lack of consideration for chord changes. By
considering chord context along with the pitch, duration, and
step values, their model considers additional context important
for solo generation. Such a feature would be particularly help-
ful in generating musically sensible ascending and descending
phrases.

Furthermore, Gupta’s model results in a higher degree of
note duration variation. We have not determined a root cause,
but we found that notes generated by our model settle into a
very regular and predictable cadence as the solo progresses—
a trait typically undesirable for jazz music, but might be
desirable for other genres of music such as classical music.

We also found that competing models will generally limit a
solo’s range to the range of the solo’s instrument, as would be
expected from a real instrumental performance. This is another
shortcoming in our approach, as we do not limit or restructure
the generation of solos to account for this constraint. We
believe this may also play a role in generating a more audibly
attractive solo.

V. CONCLUSION

Through our experimentation, we have demonstrated a
methodology to train multiple machine learning models using
improvised jazz solos represented in the MIDI format. Though
previous attempts have been made to generate music with
deep learning, we sought to train linear models and various
neural networks to generate jazz solos based on the work
of the Jazzomat Research Project [1], which hand-transcribed
hundreds of classic jazz solos into a single database. Using
these classic solos, we trained ARIMA models and LSTM-
based neural networks to observe the patterns and themes of
great jazz artists.

We quickly discovered that ARIMA models are not appro-
priate for solo generation, which is better suited for RNN-
based models. While the LSTM model outperformed the
ARIMA model by a significant margin, the results of our
model fell well short of the musical greatness of Charlie Parker
and Dizzie Gillespie, but it occasionally generates a phrase or
idea that sounds like it may fit somewhere in their work. While
we have not in this project demonstrated a complete solution
to automate jazz improvisation, we present a framework that
makes it possible with more appropriate algorithms and neural
network architectures.

By conducting a statistical analysis of the generated solos,
we found that the pitch and duration distributions were appro-
priate for the given training data, demonstrating that we had
appropriately provided musical data to the network. What our
solution lacks, however, is a sense of musicality which is a

subjective quality that can be further studied. While the pitch,
step, and duration distributions may fit what is expected from
the training dataset, we found that many of the generated solos
were different from what we expected. This helps illustrate the
fact that simply because a network implementation arrives at a
statistically appropriate conclusion, the algorithm may not be
sufficient for the intended problem space. This is amplified by
approaching a problem like jazz, where the content is generally
free-form, improvised, and the success of the result is highly
subjective.

VI. FUTURE DIRECTIONS

For researchers interested in pursuing this space, we pro-
vide suggestions to build on successes and failures seen by our
model.

To improve upon the LSTM model demonstrated above, we
first suggest experimenting with different note representation
formats such as a normalized representation, in which all note
pitch values are represented as an integer displacement from
the chord’s base note. For example, if the chord is A-7, and
the soloist is playing a G, the integer displacement would be
10, as the G is 10 chromatic steps away from the base note A.
Such an approach will allow solo phrases to better generalize to
all chords of a song. With un-normalized note representations,
a neural network may make false associations between solo
phrases and chords when pitches are not normalized to the
base note of a chord. Such a change will increase the amount
of pre-processing required on the data but has the potential to
improve the quality of the generated solos. It will also allow
the model to generalize to multiple solos regardless of the
training solo’s key.

Furthermore, future models should train on a richer subset
of the database data. Currently, the LSTM model attempts to
generate new notes based solely on the pitches of a sequence of
previous notes within the solo. By adding form, chorus, beat,
and chord data to the training dataset, more appropriate pitch
and duration values can be predicted, and therefore generated,
by the model.

For result analysis, especially when solos are generated
over chord progressions, we suggest also generating a backing
track and merging the result to evaluate the solo’s performance
in context of the chord progression.

Current research in this area also focuses on the decom-
position of jazz solos into ideas and phrases, developing a
form of jazz “grammar” [9]]. By conducting such a hierarchical
analysis, solos can be generated in a form more akin to a
musician’s train of thought during improvisation, where they
imagine harmonic and melodic ideas instead of individual
notes. To facilitate this pattern of hierarchical analysis, we
believe that employing a convolutional neural network (CNN)
may be appropriate for extracting such features.

REFERENCES

[1] M. Pfleiderer, K. Frieler, J. AbeBer, W.-G. Zaddach, and
B. Burkhart, Eds., Inside the Jazzomat - New Perspectives
for Jazz Research. Schott Campus, 2017.

[2] A. Géron, Hands-on Machine Learning with Scikit-
Learn, Keras TensorFlow. O’Reilly Media, 2019, ISBN:
9781492032649.

H.-T. Hung, C.-Y. Wang, Y.-H. Yang, and H.-M. Wang,
“Improving automatic jazz melody generation by transfer
learning techniques,” in 2019 Asia-Pacific Signal and
Information Processing Association Annual Summit and
Conference (APSIPA ASC), 2019, pp. 339-346. DoT1: 10.
1109/APSIPAASC47483.2019.9023224.

J. Biles, “Genjam: A genetic algorithm for generating
jazz solos,” Jul. 1994.

G. Papadopoulos and G. Wiggins, “A genetic algorithm
for the generation of jazz melodies,” 1998.

F. Pachet, “Musical virtuosity and creativity,” in Comput-
ers and Creativity, 2012, pp. 115-146. Do1:/10.1007/978-
3-642-31727-9 5.

“Generate music with an rnn:tensorflow core.” (), [On-
line]. Available: https : / / www . tensorflow . org /
tutorials/audio/music_generation #extract_notes| (visited
on 05/05/2022).

S. Gupta, Composing jazz music with deep learning, May
2018. [Online]. Available: https://www.hackerearth.com/
blog/developers/jazz-music-using-deep-learning/.

J. Gillick, K. Tang, and R. M. Keller, “Machine learning
of jazz grammars,” Computer Music Journal, vol. 34,
no. 3, pp. 56-66, 2010. DOI: |10.1162/com;j_a_00006,

https://doi.org/10.1109/APSIPAASC47483.2019.9023224
https://doi.org/10.1109/APSIPAASC47483.2019.9023224
https://doi.org/10.1007/978-3-642-31727-9_5
https://doi.org/10.1007/978-3-642-31727-9_5
https://www.tensorflow.org/tutorials/audio/music_generation#extract_notes
https://www.tensorflow.org/tutorials/audio/music_generation#extract_notes
https://www.hackerearth.com/blog/developers/jazz-music-using-deep-learning/
https://www.hackerearth.com/blog/developers/jazz-music-using-deep-learning/
https://doi.org/10.1162/comj_a_00006

	Introduction
	Related Work
	Our Solution
	Description of Dataset
	ARIMA Model
	RNN Model
	Training
	Implementation

	Deeper Models

	Comparison
	Conclusion
	Future Directions

