Sentence Autocompletion with GRU-Based RNN

Ilana Zane and William Bidle

January 6, 2023

1 Introduction

In this project, I explore generative text models in the
form of charcter-level and word-level models and com-
pare their results. An analysis of the performance of
these models is conducted through experimenting with
the temperature hyperparameter that is commonly
used in Recurrent Neural Networks (RNN). Some of
the characteristics of the generated text that are an-
alyzed are the predicted letter frequency, the quality
of the words from the generated text, and the TF-IDF
score. The two models that are used are composed of
GRU Time Distributed layers that are trained on the
Alice In Wonderland dataset [1] as well as the New York
Times Comments dataset [2].

2 The Data

Throughout this project, I decided to use two very dif-
ferent public datasets, the Alice in Wonderland text |1]
as well as the New York Times comments section from
April 2017. The project initially started with the inten-
tion of only using the NYT dataset, but I found after
testing, the generative text lacked a distinct style and
was hard to evaluate. This is because the NYT dataset
contains comments from people all over the world and
therefore lacks a distinctive tone. However, the Alice in
Wonderland dataset contains a distinct tone from the
author, Lewis Carroll. Therefore it was easier to objec-
tively say whether a generated sentence made sense or
not. Each dataset contains hundreds of thousands of
unique words that can be used for training.

2.1 Preprocessing the Data

Before training, both datasets had to be cleaned in or-
der to reduce unwanted characters. Punctuation marks
and HTML characters that indicated new lines were re-
moved. Once the dataset was cleaned, a tokenizer was
created and then fit on the dataset.

tokenizer = Tokenizer(char_level=True)
tokenizer.fit_on_texts([allChars])

In doing so, all of text was extracted and turned into
individual, character level tokens. By changing the
char_level parameter to False. The dataset was able

to be tokenized by words and therefore be a word-level
model. Once the dataset was split into training and
was turned into sequences through a window splitting
method. Generally, RNN’s cannot learn sequences that
are much longer than 100 steps, so I set this as a con-
straint for splitting our data [3]. The window function
takes in the following parameters:

n_steps = 100
window_length = n_steps+1
shift =1

drop_remainder = True

Once the sequences were generated based on the win-
dow parameters, the now nested dataset was flattened
into tensors, shuffled, and a mapping was created to
connect the input sequences with their respective tar-
get, which was the last character in the sequence. Fig-
ure |1| demonstrates this entire process.

[First Citizen:\nﬂefcre”.}

window ()
flat_map()
windows
3
2r
1

batch()
map ()

‘
First Citizen:\nBefore... >shuffle()

inputs targets batch
2 #1

oF————

H Arr
First Citizen:\nBefore...

Figure 1: Preparing the input data|3]

3 Model

GRU cells were used as opposed to LSTM cells in order
to reduce the number of training parameters and there-
fore reduce memory and training time. The sequential
model built using Tensorflow [4] contains three layers:
two GRU cells and a TimeDistributed Layer.The GRU
layers contain the following parameters:

return_sequences = True
dropout = 0.2
recurrent_dropout = 0.2

For the output of the model, the Dense layer is
wrapped in TimeDistributed with a softmax activation

function. The model uses sparse categorical crossen-
tropy to measure loss during training and uses adam
optimization. Training took place with 20 epochs and
10 steps per epoch.

Figure [2| shows the model that was used for the char-
level and word-level networks.

Model: "sequential_ 1"

Layer (type) Output Shape Param #
gru_2 (GRU) (None, None, 128) 1065984
gru_3 (GRU) (None, None, 128) 99072
time_distributed_1 (TimeDis (None, None, 2646) 341334
tributed)

Total params: 1,506,390
Trainable params: 1,506,390
Non-trainable params: @

Figure 2: Model

4 Results

Once the character-level model was trained, a prompt
of an arbitrary length of characters (around ten charac-
ters) was fed into the model as input and the predictions
for each character were generated. Fifty generated sen-
tences were produced and put into a text file for later
evaluation. Below is an example of generated text:

"At it was now the rabbit to her had not
one any the was not"

The generated predictions for the word level model fol-
lowed the same procedure. Below is an example output:

"A explanation reaching minded inside bore
vegetable cup treated generally beautify
whisper telescopes lazily shiver"

From these results, we can see that at temperature =
0.2 the char-level model produces sentences that have
a lot of repetition but there is some semblance of gram-
mar, especially towards the beginning of the sentence.
With the same temperature for the word-level model,
the generated words are a lot more unique. However,
there is no notion of grammar— the sentence seems to
be devoid of structure and is just an amalgamation of
words.

5 Evaluating Performance

In general, evaluating the quality of a sentence gener-
ated from an artificial source is a very complex problem
and one that is still being actively researched [sources
for this]. Yet, there is still quite a lot of interesting
analysis that can be done on generated sentences to

test their quality. In order to compare the outputs of
the char-level model with the word-level model, 1 cre-
ated a function that recursively generated letters and
appended them to an ongoing sequence of generated
letters. The result was an entire sentence of specified
length made up of the generated letters. With this
I could compare different characteristics of generated
sentences from the two models.

5.1 Temperature

One of the more common parameters that show up in
RNN’s is temperature. The temperature parameter
is important to control the diversity of the generated
text— diversity is created by dividing the logits by the
temperature. When the temperature is closer to 0, the
model will favor high probability characters. When the
temperature is closer to 1, all of the characters will have
an equal chance of being generated. In the subsequent
sections I will analyze the generated text based on dif-
ferent temperatures and determine which temperature
objectively creates the best generated sentences.

5.2 Letter Frequency

One of the first things that can be noticed about almost
any given text is that it generally follows a certain letter
frequency distributionﬂ This means that for a given
text, letters will show up some percentage of the time
on average. Such a distribution for the two training
data sets used in this project can be seen in Figure

[Alice in Wonderland Text
[New York Times Comments

Occurance Rate (%)

abcdefgh i jk Ilmnoopagrstuvwsxyz

Figure 3: Occurrence rate of letters in the used in
and . As an example, for both data sets, the letter
a has about an 8% occurrence rate, or shows up as 8%
of all letters in the document.

This then leads to one of the more simple methods
of analyzing the quality of the generated sentences, by
comparing the distribution of generated letters to that
of the training set as the temperature is varied. Exam-
ples of these distributions for the temperatures 0.3, 0.6,
and 0.9 can be seen in Figure [4]

1Obviously texts in different languages will follow a different
distribution.

Temperature = 0.3

Temperature = 0.6

Temperature = 0.9

[0 Generated Text
124 [Alice in Wonderland Text | {

Occurance Rate (%)

abcdefghijklimnopagrstuvwxyz

abcdefghijklimnopagrstuvwxyz

[0 Generated Text
[Alice in Wonderland Text

[0 Generated Text
[Alice in Wonderland Text

abcdefghijklimnopgrstuvwxyz

Figure 4: Occurrence rate of letters in the generated sentences (red) at different temperatures compared to that of
the Alice in Wonderland training text (blue). The purple region indicates how much the two overlap, indicating the
similarity between letter rates - the more the bar is purple, the closer the rate of occurrence for that letter.

As can be seen, the overlapping purple region for
each letter increases as the temperature is increased,
indicating that the output sentences better represent
the training data’s letter distribution as the tempera-
ture is increased. Taking this further, we can compute
a naive score for the output based off of how close the
average letter rate is to the training. This can be done
through the sum of the absolute error between each
letter frequency, as given in Equation [I]

Errorpp = Z |Fr — fal (1)

TEX

Where the sum takes place over the alphabet under
consideration, x, and F,, and f, represent the letter fre-
quencies of the training set and model output, respec-
tively. The closer the model output letter frequency
distribution resembles the training set, the closer the
error will be to zero. Utilizing Equation [I] on the dis-
tributions given in Figure[d] for a range of temperatures
between 0.1 and 0.9 results in Figure [f] below.

Absolute Difference (%)
ol Iy = = = = N N
> 6 N & o @® o N

4
EY

011 0?2 0?3 014 015 OjB 0?7 DTB 019
Temperature

Figure 5: Absolute difference as given by Equation [I] as
a function of temperature.

In other words, generated letters at a temperature of
0.1 will occur about 2.1 more/less often than they do in
the Alice in Wonderland text, while generated letters
at a temperature of 0.9 will occur about 0.5 more/less
often. As seen in Figure[5] the deviation of the average
letter occurrence rates in the generated sentences from
that of the Alice in Wonderland training text tends to-
wards zero as the temperature increases, implying a
better performance for higher temperatures. Now of
course this method is not perfect, as it could be very
easy to fool someone into thinking the model’s perfor-
mance is quite good if it produces a low error. For
example, a reference sentence:

"Hello there, how are you?"

and generated sentence:
"Ylue hhtre eow ar,o ehol?"

will yield an error of zero when plugged into Equa-
tion [1} Clearly the word quality in the example gener-
ated sentence is quite bad, and wouldn’t fool anyone!
Indeed, at a temperature of 0.9, an example of a gen-

erated sentence is:

"At ot!’ quite tirion of notsle op of efe
fain,)that a chat meesn poard offered"

Whereas a temperature of 0.1 generates a sentence
with almost all real words:

"All the was to her herself the was soon
and the was now the was "

Therefore it would be helpful to have an additional
metric to evaluate the model’s performance.

5.3 Word Quality

A second thing that can be done to evaluate the gener-
ated sentences is to look at the quality of the generated
words. As mentioned in the previous section, it would
be quite easy to fool someone into thinking the gener-
ated words came from the actual text by looking at the
letter frequency alone. The example generated sentence
from the previous section contained no real words, and
naturally, it might be worthwhile to additionally look
into the ratio of real words to fake words. Figure [0]
shows the number of real, fake, and repeated words in
the generated sentences as a function of temperature.

® Number of Real Words
Number of Fake Words
e Repeated Words

e

1001 /"
0‘.1 O.‘Z 013 0‘.4 0‘.5 0.‘5 0.‘7 0‘,5 0‘.9
Temperature

Figure 6: The number of real, fake, and repeated words
generated as a function of temperature.

As seen in Figure [6] the number of real words tends
to increase while the number of repeated words tends to
decrease as the temperature increases, which intuitively
makes sense since higher temperatures correspond to
more diverse character selection, as the model will have
a higher chance of selecting lower probability characters
(see Section . However, there is additionally an
increase in the number of fake words generated as the
temperature is increased, and at around a temperature
of 0.6, the number of fake and real words generated
roughly approaches the same value.

Clearly we would like our generated sentences to have
a higher amount of real words versus fake words, and
it would additionally be good to have the number of
repeated words kept to a minimum, as an average En-
glish sentence has very few repeated words per sentence.
This then leads to the second way in which the error
can be calculated, given by Equation

Fake Repeated 9
‘Real Total 2)

This equation perfectly captures what is desired from
a good sentence. If either the number of fake words
is high compared to the number of real words or the
number of repeated words is high compared to the total
number of words, then the error in Equation [2| will be
large. Computing this error from the information in
Figure [0] yields Figure [7}

Errorwg =

Fake Words per Real Word

o
N

o
o

0‘.1 0.‘2 0.‘3 0‘.4 0‘.5 0.‘6 0.‘7 0‘.8 0‘.9
Temperature

Figure 7: Errorwc as given by [2|as a function of tem-
perature.

As seen in Figure [7] the word quality decreases as
the temperature increases, opposite to what was seen
in Figure This makes sense because we expect
the model to take more chances as the temperature is
higher, allowing for lower probability letters to be gen-
erated regardless of what came before it. Even though
the number of repeated words decreases, there is a dra-
matic rise in the number of fake words ultimately caus-
ing the higher temperatures to have a higher error.

5.4 Bringing it Together

By multiplying Equations [[]and 2] together, I can create
a way of deducing the performance of the model as a
function of temperatureﬂ This essentially boils down to
combining the results of Figures[5]and[7l The lower the
score, the better the performance of the model based on
the above metrics. The results using this methodology
for the Alice in Wonderland model as well as the New
York Times Comments Section Model can be seen in

0641 @ Alice Model
NYT Model

0.51

0.2

0‘.1 0.‘2 0.‘3 0‘.4 0‘.5 0.‘6 0.‘7 0‘.8 0‘.9
Temperature

Figure 8: The final model score as a function of temper-
ature. The closer to zero the better the model performs.

2The validity of this can be justified from the fact that both
of the procedures from Sections and have clear trends as
the temperature changes,and therefore the product will as well.

As seen in Figure a temperature of 0.1 results
in the best performance for the character level model
trained on the Alice in Wonderland text, whereas a tem-
perature of 0.5 results in the best performance for the
character level model trained on the New York Times
comments. Now, the same analysis can be done for the
word level models, as seen in Figure [9]

0.230
0.225 1

w 0.220 +

s
£ 0.2154
0.210 1

0.205

4.75 4

4.50 1
o

S 4251
S

e
= 4.00
w

3.751

3.50 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Temperature

Figure 9:

It turns out that the performance of the word level
model is not affected as drastically by temperature as
is the character level model.

6 Conclusion

Some alternatives to the GRU-based RNN that is used
in this project are: LSTM-based RNN, Markov Chains,
and GAN’s. These models perform well with time-
series data. One issue that I encountered through-
out this project is finding a balance between grammar
and the generation of unique words. Markov chains
are computationally cheap and relatively easy to imple-
ment, but they are defined by their 'random walk’ na-
ture. This might be an issue as the Markov chain might
not tend towards the most probable solution over time
and would therefore require more training or parame-
ters to correct this [5]. LSTM-based RNN’s are able to
achieve similar performance to the newer GRU-based
models, but since GRU cells are more simplistic, the
training process is computationally more efficient than
LSTM’s. Given the amount of data, I thought that the
GRU cells would still be an appropriate choice. GAN’s
may also be an effective approach to generating text,
howerever this is a far more complicated task— gener-
ating adversarial text is a non-trivial task.

As for the analysis section of this project, there are
other possibilites for measuring the quality of the gener-
ated sentences from both models. To more accurately
categorize a generated sentence as 'good’ or 'bad’, I
could have analyzed the number of verbs or nouns, to
determine if there is a plausible sentence structure.

References

[1]

L. Carroll, Alice’s adventures in wonderland, 1997.
[Online]. Available: https://www . kaggle . com/
datasets / roblexnana / alice - wonderland -
dataset.

N. Y. Times, New york times comments, 2017.
[Online]. Available: https://www . kaggle . com/
datasets/aashita/nyt-comments!

A. Geron, Hands-On Machine Learning with
Scikit-Learn, Keras, and Tensorflow. O’Reilly,
2019.

TensorFlow: Large-scale machine learning on het-
erogeneous systems, Software available from ten-
sorflow.org. [Online]. Available: https : // www .
tensorflow.org/.

1. Zane, Jazz solo generation usnig long short-term
memory recurrent neural networks, 2022. [Online].
Available: https : //github . com/ ilanazane /
Jazz-Solo-Generation-Using-RNN.

https://www.kaggle.com/datasets/roblexnana/alice-wonderland-dataset
https://www.kaggle.com/datasets/roblexnana/alice-wonderland-dataset
https://www.kaggle.com/datasets/roblexnana/alice-wonderland-dataset
https://www.kaggle.com/datasets/aashita/nyt-comments
https://www.kaggle.com/datasets/aashita/nyt-comments
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/ilanazane/Jazz-Solo-Generation-Using-RNN
https://github.com/ilanazane/Jazz-Solo-Generation-Using-RNN

	Introduction
	The Data
	Preprocessing the Data

	Model
	Results
	Evaluating Performance
	Temperature
	Letter Frequency
	Word Quality
	Bringing it Together

	Conclusion

